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Optimizing Packaging Material Using Calculus 

Rationale and Objective  

Humans have resorted to manufacturing and processing in the contemporary world for profit, and 

they produce a great deal, the majority of which is disposed of improperly after usage. This element 

caused me to become worried about the repercussions of pollution on the environment, which are 

felt in many ways, including health problems in human life. The media is inundated with new 

reports almost daily concerning plastics wreaking havoc in the oceans and bio-accumulating in 

higher-order animals (Rhodes 207). This revelation gave me the idea to research to lower the 

sector's plastic use. I designed a 1-liter plastic bottle container using the least amount of plastic 

possible. Ultimately, I decided to settle with a 1-liter capacity since it produced the most. 

Therefore, this exploration uses calculus to optimize the raw materials required to produce plastic 

containers to eliminate waste. 

Mathematical Computation 

To create the optimal surface area of the various shapes that will be considered, I will first 

determine the surface area of a raw material that will be utilized as a foundation for the calculation 

in this study. Additionally, since reducing plastic waste entails maximizing raw material area, I 

will consider surface area rather than volume. This approach is crucial, as maximizing surface area 

allows for better exposure to natural processes like degradation and decomposition. Furthermore, 

it is simpler to discover techniques for decreasing plastic waste when the surface area is prioritized 

over volume, such as creating goods with complex, linked designs that optimize material 

consumption and reduce waste. Ultimately, this surface-area-centric strategy will help achieve the 

overarching objectives of lowering plastic waste and advancing sustainability. So, let's examine 

the diagram down below. 

 
Diagram 1: An example of a 1-litre cuboid  

Since this box will be the starting point for my argument, I'll start by figuring out how much surface 

area (SA) is available to generate a one-liter container. We can determine how much plastic is 

needed to build the box by calculating its surface area. This data will be essential for assessing 

possible waste and investigating strategies for material consumption optimization. Furthermore, 

by calculating the surface area, we can determine if it would be possible to add complex, linked 

patterns to the design, which would help to reduce plastic waste and advance sustainability. 

Therefore, by examining the SA, we can take concrete steps towards creating a 1-liter container 

with minimal environmental impact. 

𝑆𝐴 = 2(𝑙𝑤 + 𝑙ℎ + 𝑤ℎ)s 

𝑆𝐴 = 2((140 × 60) + (60 × 195) + (140 × 195)) = 94800𝑚𝑚2 
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As calculated above, the surface area of the cuboid in diagram 1 is 94800𝑚𝑚2. This calculated 

area will act as the comparison basis of the optimized material. 

Conical Shaped Containers 

Conical-shaped containers aid in the packaging of goods like ice cream. Below is an image of an 

actual ice cream cone (diagram 2). This ice cream cone is made with a crispy wafer cone shaped 

like a cone with a pointed top. The conical shape allows for easy stacking of the ice cream cones, 

making it convenient for packaging and transportation. In addition, the cone offers a stable 

foundation for the ice cream scoop, preventing it from toppling over while the customer is enjoying 

it.  

 
Diagram 2: A real-life example of a conical-shaped container 

Consider the conical figure below to understand the connection between this container's shape and 

mathematics. 

 
𝐶𝑆𝐴 = 𝜋𝑟𝑙 + 𝜋𝑟

2… . . (1) 

𝐶𝑉 =
1

3
𝜋𝑟2ℎ… . (2) 

In this case, let us use equation 2 above to make ℎ the subject of the formula as follows 

3(𝐶𝑉) = (
1

3
𝜋𝑟2ℎ) 3 

3𝐶𝑉 = 𝜋𝑟
2ℎ 

3𝐶𝑉
𝜋𝑟2

=
𝜋𝑟2ℎ

𝜋𝑟2
 

3𝐶𝑉
𝜋𝑟2

= ℎ 
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Nonetheless, according to Pythagoras' theorem (Britannica),  

𝑙2 + ℎ2 = 𝑠2 

Where 𝑙, ℎ, 𝑎𝑛𝑑 𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑎𝑛𝑑 𝑠𝑙𝑎𝑛𝑡 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎 𝑟𝑖𝑔ℎ𝑡 −
𝑎𝑛𝑔𝑙𝑒𝑑 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒. Therefore, to get the length of the triangle, we rearrange the Pythagorean 

equation as follows. 

𝑙 = √𝑟2 + ℎ2…… . (3) 
We get the following equation by substituting this length to the surface area equation. 

𝐶𝑆𝐴 = 𝜋𝑟 (√𝑟2 + ℎ2) + 𝜋𝑟
2 

In this case, the above-conducted substitution is crucial in this computation since the surface area 

of a whole cone must be represented in terms of its radius (r) and vertical height (h). Nevertheless, 

up to this point, the volume equation below represents the vertical height. 
3𝐶𝑉
𝜋𝑟2

= ℎ 

Therefore, this calls for further substitution in the area equation, resulting in the following.  

𝐶𝑆𝐴 = 𝜋𝑟(√𝑟2 + (
3𝐶𝑉
𝜋𝑟2

)
2

) + 𝜋𝑟2 

Now, on simplification, we get the following.  

𝐶𝑆𝐴 = 𝜋𝑟 (√
𝜋2𝑟6 + 9𝐶𝑉

2

𝜋2𝑟4
) + 𝜋𝑟2 

This expression can further be simplified by employing the quotient rule below ("Exponents and 

Square Roots - GRE (Video Lessons, Examples and Solutions)") 

√
𝑚

𝑛
=
√𝑚

√𝑛
 

Therefore, 

𝐶𝑆𝐴 =

√𝜋2𝑟6 + 9𝐶𝑉
2 + 𝜋𝑟3

𝑟
…… . . (4) 

At this point, I will calculate the optimum measurements for a conical-shaped packing container 

that will reduce the required production material, using equation (4) above. As a result, having a 

solid knowledge of differential calculus will help with the optimization process. Below is how I 

will apply the differential equation. 

𝑑𝐶𝑆𝐴
𝑑𝑟

=
𝑑

𝑑𝑟

(

 
√𝜋2𝑟6 + 9𝐶𝑉

2 + 𝜋𝑟3

𝑟

)

  

Nevertheless, I will utilize the quotient rule, which is expressed as follows in differentiation, due 

to the equation needed to get the derivative of a quotient function ("Quotient Rule For Calculus 

(w/ Step-by-Step Examples!)" ): 
𝑑𝑚

𝑑𝑛
=
(𝑛𝑑𝑚 −𝑚𝑑𝑛)

𝑛2
 

Where  
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𝑑𝑚

𝑑𝑛
=
𝑑𝐶𝑆𝐴
𝑑𝑟

 

So, let 𝑚 be the numerator and 𝑛 be the denominator of equation (4) above. Then,  

𝑚 = √𝜋2𝑟6 + 9𝐶𝑉
2 + 𝜋𝑟3 

And  

𝑛 = 𝑟 
Hence,  

𝑑𝑚

𝑑𝑟
=
𝑑

𝑑𝑟
(√𝜋2𝑟6 + 9𝐶𝑉

2 + 𝜋𝑟3) 

𝑑𝑚

𝑑𝑟
=
𝑑

𝑑𝑟
(√𝜋2𝑟6 + 9𝐶𝑉

2) +
𝑑

𝑑𝑟
𝜋𝑟3 

𝑑

𝑑𝑟
𝜋𝑟3 = 3𝜋𝑟2 

By chain rule knowledge (Derivatives-Chain rule and power rule PDF); 

𝑑

𝑑𝑟
(√𝜋2𝑟6 + 9𝐶𝑉

2) =
3𝜋2𝑟5

√𝜋2𝑟6 + 9𝐶𝑉
2

 

𝑑𝑚

𝑑𝑟
=

3𝜋2𝑟5

√𝜋2𝑟6 + 9𝐶𝑉
2

+ 3𝜋𝑟2 

Remember that  

𝑛 = 𝑟 
Therefore,  

𝑑𝑛

𝑑𝑟
= 1 

We have the complete derivative from the quotient formula stated earlier, as shown below. 
𝑑𝐶𝑆𝐴
𝑑𝑟

=
𝑑𝑚

𝑑𝑛
=
(𝑛𝑑𝑚 −𝑚𝑑𝑛)

𝑛2
 

Therefore, 

𝑑𝐶𝑆𝐴
𝑑𝑟

=

(

 
 
𝑟 ×

(

 
3𝜋2𝑟5

√𝜋2𝑟6 + 9𝐶𝑉
2

+ 3𝜋𝑟2

)

 

)

 
 
− (1 × (√𝜋2𝑟6 + 9𝐶𝑉

2 + 𝜋𝑟3)) 

𝑑𝐶𝑆𝐴
𝑑𝑟

=

2𝜋2𝑟6 + 2𝜋𝑟3 (√𝜋2𝑟6 + 9𝐶𝑉
2) − 9𝐶𝑉

2

𝑟2√𝜋2𝑟6 + 9𝐶𝑉
2

……… . (5) 

At this point, the solutions to equation 5 are obtained from the first derivative of equation 4, and it 

is this outcome that will make obtaining the ideal dimension easier. I will equate it to zero to move 

on from equation 5 and provide the solution below. 
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2𝜋2𝑟6 + 2𝜋𝑟3 (√𝜋2𝑟6 + 9𝐶𝑉
2) − 9𝐶𝑉

2

𝑟2√𝜋2𝑟6 + 9𝐶𝑉
2

= 0 

𝑟2√𝜋2𝑟6 + 9𝐶𝑉
2

(

 
 
2𝜋2𝑟6 + 2𝜋𝑟3 (√𝜋2𝑟6 + 9𝐶𝑉

2) − 9𝐶𝑉
2

𝑟2√𝜋2𝑟6 + 9𝐶𝑉
2

)

 
 
= 0 

2𝜋2𝑟6 + 2𝜋𝑟3 (√𝜋2𝑟6 + 9𝐶𝑉
2) − 9𝐶𝑉

2 = 0 

Simplifying the above expression results in the following  

𝐶𝑉 = √
8𝜋2𝑟6

9
 

At 
𝑑𝐶𝑆𝐴

𝑑𝑟
= 0, 𝐶𝑉 is optimum. Thus,  

𝐶𝑉 = 𝑂𝑝𝑡𝑉 = √
8𝜋2𝑟6

9
………(6) 

The optimum volume of a cylindrical, conical-shaped item is represented by equation (6), 

computed with optimal radius. What, then, is the relationship between the radius and height of an 

optimum conical object? I'll compare the optimized volume equations with the general cone 

volume equations to find a solution, as seen below. 

𝐶𝑉 = 𝑂𝑝𝑡𝑉 
Thus, 

√
8𝜋2𝑟6

9
=
1

3
𝜋𝑟2ℎ 

2𝜋

3
√2(𝑟2)3 =

1

3
𝜋𝑟2ℎ 

3

𝜋𝑟2
(
2𝜋𝑟3√2

3
) = (

1

3
𝜋𝑟2ℎ) ×

3

𝜋𝑟2
 

2𝑟√2 = ℎ 
In summary, we may deduce that given a variable factor of 2√2, the height of an ideal cone is 

precisely proportional to its optimum radius. From another perspective, the following steps would 

be taken to get the perfect measurements for a conical-shaped object holding one liter of fluid.  

𝑂𝑝𝑡𝑉 = √
8𝜋2𝑟6

9
 

1000 = √
8𝜋2𝑟6

9
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1000002 = (√
8𝜋2𝑟6

9
)

2

90000000000

8𝜋2
= 𝑟6 

𝑟 = √
90000000000

8𝜋2

6

= 32.3159707 

𝑟 ≈ 32.32𝑚𝑚 
After determining the value of (r), let's use the procedure below to determine the optimal height. 

2𝑟√2 = ℎ 

ℎ = √
90000000000

8𝜋2

6

× 2√2 =  91.41562994ℎ ≈ 91.42 

From the above calculation, the approximate dimensions that could generate the optimum 

materials are ℎ ≈ 91.42 𝑚𝑚 𝑎𝑛𝑑 𝑟 ≈ 32.32 𝑚𝑚. Therefore, the optimum surface area of the 

bottle calculated using these measurements is as follows. 

𝐶𝑆𝐴 = 𝜋𝑟𝑙 + 𝜋𝑟
2 

Nevertheless, I discovered earlier that 𝑙 = √𝑟2 + ℎ2 

 

Thus,  

𝐶𝑆𝐴 = 𝜋 × 32.32 × √91.42 2 + 32.322 + 𝜋 × 32.32
2 

𝐶𝑆𝐴 ≈ 13132.39𝑚𝑚
2 

 

Optimized Material 

https://customhomeworkhelp.com/
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Following optimization, the approximate area of materials needed to assemble a standard ice cream 

cone with a minimum capacity of one liter is determined (using optimized measurements). 

Comparing it to the initial area of the raw material, we find that the 13132.39𝑚𝑚2 < 94800𝑚𝑚2. 

Calculate the percentage change between the two areas using the formula below ("Percentage 

Change - Definition, Formula, Examples"). 

% 𝑐ℎ𝑎𝑛𝑔𝑒 =
94800𝑚𝑚2 − 13132.39𝑚𝑚2

94800𝑚𝑚2
× 100% 𝑐ℎ𝑎𝑛𝑔𝑒 ≈ 35.04% 

According to the computation above, improving a conical container—like a normal ice cream 

cone—would result in material and cost savings of around 35.04%. Nevertheless, in real life, this 

value may be wrong, especially considering that in Diagram 2, the measurements of the indicated 

conical material are not regular and overlap each other, meaning that it might even be more 

prominent to hold small quantities. 

Cylindrical Containers 

A cylinder is an object composed of two circles that are comparable to one another on parallel 

planes, their interiors, and any line segments that cross each other and terminate in circular regions 

parallel to the segment that includes the centers of the two circles ("Cylinder (Shape, Properties, 

Formulas, Surface Area, Volume, Examples)"). Since the radius of a base in this example 

determines the diameter of a cylinder, the circles and their interiors form the basis for the structure. 

The cylinder's width and height equal its two bases' lengths and altitude. Its altitude is a segment 

that runs perpendicular to the planes of the two bases. The actual 1-liter cylindrical bottle shown 

below is an example. 

 
Diagram 3: An example of a cylindrical container 

Optimum Surface Area 

The volume (𝐶𝑦𝑉) and the cylinder's surface area (𝐶𝑦𝑆𝐴) can be calculated using the formulas 

below. 

𝐶𝑦𝑉 = 𝜋𝑟
2ℎ…… . 𝑖𝐶𝑦𝑆𝐴 = 2𝜋𝑟

2 + 2𝜋𝑟ℎ… . . 𝑖𝑖 
I will begin this section by rearranging the volume equation such that the cylinder's height (h) is 

the focus of the subsequent expression. The object's height is determined by; 
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𝐶𝑦𝑉
𝜋𝑟2

=
𝜋𝑟2ℎ

𝜋𝑟2
 

Therefore,  

ℎ =
𝐶𝑦𝑉
𝜋𝑟2

… . . 𝑖𝑖𝑖 

Substituting equation 𝑖𝑖𝑖 in 𝑖𝑖 we get; 

𝐶𝑦𝑆𝐴 = 2𝜋𝑟
2 + 2𝜋𝑟ℎ 

𝐶𝑦𝑆𝐴 = 2𝜋𝑟
2 + 2𝜋𝑟 (

𝐶𝑦𝑉
𝜋𝑟2

) 

The equation is prepared for differential calculus, as seen below. 

𝑑𝐶𝑦𝑆𝐴
𝑑𝑟

=
𝑑

𝑑𝑟
(2𝜋𝑟2 + 2𝜋𝑟 (

𝐶𝑦𝑉
𝜋𝑟2

)) 

𝑑𝐶𝑦𝑆𝐴
𝑑𝑟

=
𝑑

𝑑𝑟
(2𝜋𝑟2) +

𝑑

𝑑𝑟
(2𝜋𝑟 (

𝐶𝑦𝑉
𝜋𝑟2

)) 

𝑑𝐶𝑦𝑆𝐴
𝑑𝑟

= 4𝜋𝑟 +
𝑑

𝑑𝑟
((
2𝐶𝑦𝑉
𝑟
)) 

𝑑

𝑑𝑟
((
2𝐶𝑦𝑉
𝑟
)) =  

𝑑

𝑑𝑟
(2𝐶𝑦𝑉𝑟

−1) 

𝑑

𝑑𝑟
(2𝐶𝑦𝑉𝑟

−1) = −2𝐶𝑦𝑉𝑟
−2 = −

2𝐶𝑦𝑉
𝑟2

 

Thus  
𝑑𝐶𝑦𝑆𝐴
𝑑𝑟

= 4𝜋𝑟 −
2𝐶𝑦𝑉
𝑟2

 

I will equate the above equation to zero and solve it as follows to achieve the optimum results 

possible; 

(4𝜋𝑟 −
2𝐶𝑦𝑉
𝑟2

) 𝑟2 = 0 

4𝜋𝑟3 − 2𝐶𝑦𝑉 = 0 

4𝜋𝑟3

2
=
2𝐶𝑦𝑉
2

 

𝐶𝑦𝑉 = 2𝜋𝑟
3 

Recall that at 
𝑑𝐶𝑦𝑆𝐴

𝑑𝑟
= 0, 𝐶𝑦𝑉 = 𝑂𝑝𝑡𝑉. Hence, 

𝑂𝑝𝑡𝑉 = 2𝜋𝑟
3……𝑑 

Equation d above provides the method for figuring out a cylindrical container's maximum volume, 

given its shape. The formula describes the volume in terms of its ideal radius, but it does not offer 

the dimensions needed to optimize the material to construct the optimal packing for cylindrical-

shaped containers. I will start by computing a second derivative from the following equation to 

ascertain if the radius of the volume is maximal or minimal and whether it is ideal ("How to Find 

Maximum and Minimum Points Using Differentiation"). 
𝑑𝐶𝑦𝑆𝐴
𝑑𝑟

= 4𝜋𝑟 −
2𝐶𝑦𝑉
𝑟2

 

𝑑2𝐶𝑦𝑆𝐴 = (4𝜋𝑟 −
2𝐶𝑦𝑉
𝑟2

) 𝑑𝑟2 
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𝑑2𝐶𝑦𝑆𝐴
𝑑𝑟2

=
𝑑2

𝑑𝑟2
(4𝜋𝑟) −

𝑑2

𝑑𝑟2
(
2𝐶𝑦𝑉
𝑟2

) 

Thus, 

𝑑2𝐶𝑦𝑆𝐴
𝑑𝑟2

= 4𝜋 −
𝑑2

𝑑𝑟2
(
2𝐶𝑦𝑉
𝑟2

) 

𝑑2

𝑑𝑟2
(
2𝐶𝑦𝑉
𝑟2

) =
𝑑2

𝑑𝑟2
(2𝐶𝑦𝑉𝑟

−2) 

𝑑2

𝑑𝑟2
(2𝐶𝑦𝑉𝑟

−2) =  −4𝐶𝑦𝑉𝑟
−3 

𝑑2𝐶𝑦𝑆𝐴
𝑑𝑟2

= 4𝜋 − (−4𝐶𝑦𝑉𝑟
−3) 

𝑑2𝐶𝑦𝑆𝐴
𝑑𝑟2

= 4𝜋 + 4𝐶𝑦𝑉𝑟
−3 =  4𝜋 +

4𝐶𝑦𝑉
𝑟3

 

Recall that the optimum volume (𝑂𝑝𝑡𝑉) is given as 

𝑂𝑝𝑡𝑉 = 2𝜋𝑟
3 

Therefore, 

𝑑2𝐶𝑦𝑆𝐴
𝑑𝑟2

= 4𝜋 + 8𝜋 = 12𝜋 

Comparing 12𝜋 to zero, we observed that 12𝜋 is greater than zero (12𝜋 > 0). Let us examine the 

connection between the cylinder's radius and height. The volume of an optimized cylindrical item 

and a generic cylindrical thing will be compared, as seen in the image below. The cylinder's height 

dramatically influences how much volume it contains. Generally speaking, the volume of the 

cylinder will grow if the height is increased while the radius remains the same. Conversely, the 

volume will decrease if the height is lowered while maintaining the same radius. Consequently, 

making the most of a cylindrical object's height might result in a more effective use of available 

space. 

𝑂𝑝𝑡𝑉 = 𝐶𝑦𝑉 

2𝜋𝑟3

𝜋𝑟2
=
𝜋𝑟2ℎ

𝜋𝑟2
 

2𝑟 = ℎ… . 𝑒 
As a result, the height given in equation e is also optimum since the radius is. This fact leads one 

to the conclusion that a cylindrical container's height needs to match either two radii or the diameter 

of the cylindrical container in question for it to have the smallest surface area. Thus, the following 

steps could be taken if someone needs to find out what kind of material would be needed to pack 

a 1-liter liquid: 

2𝜋𝑟3 = 100000𝑚𝑚3𝑟3 =
100000𝑚3

2𝜋
=
50000𝑚𝑚3

𝜋
 

𝑟 = √
50000𝑚𝑚3

𝜋

3

= 25.15060604 

𝑟 ≈ 25.15𝑚𝑚 
But  

2𝑟 = ℎ 
Therefore 

2 × 25.15𝑚𝑚 = ℎ 
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ℎ ≈ 50.3𝑚𝑚 

The approximated dimensions needed to produce the optimum materials are ℎ ≈
50.3𝑚𝑚 𝑎𝑛𝑑 𝑟 ≈ 25.15𝑚𝑚. In that case, let's compute the container's surface area using the 

optimized measurements. Then, as in the procedure below, compare the findings to the raw 

material's original pre-calculated area. 

𝐶𝑦𝑆𝐴 = 2𝜋𝑟
2 + 2𝜋𝑟ℎ𝐶𝑦𝑆𝐴 = 2 × 𝜋 × 25.15

2 + 2 × 𝜋 × 50.3 × 25.15 
 

𝐶𝑦𝑆𝐴 ≈ 11927.57𝑚𝑚
2 

Optimization 

Based on the above calculation, the area of the materials required to produce a typical cylindrical 

container after optimization is approximately 11927.57𝑚𝑚2. By comparison, we find that 

11927.57𝑚𝑚2 < 94800𝑚𝑚2. Using the procedure below, let's determine the percentage change 

between the two areas. 

% 𝑐ℎ𝑎𝑛𝑔𝑒 =
94800𝑚𝑚2 − 11927.57𝑚𝑚2

94800𝑚𝑚2
× 100% 𝑐ℎ𝑎𝑛𝑔𝑒 ≈ 87.42% 

According to this computation, optimizing a cylindrical container would save around 87.42% on 

the container's cost and the materials utilized. Like in a conical-shaped container, the calculations 

in the case of cylindrical containers have limitations, primarily based on the exact shape of the 

container in question. For example, the container in Diagram 3 has ununiformed dimensions, 

which this calculation did not consider. Therefore, the assumption that the container is uniform is 

challenging when optimizing real-life cylindrical containers.  Another limitation lies in the 

container's lid. This should have also been considered in the calculation, meaning that the results 

are not 100% accurate. However, for the sake of this exploration, these assumptions will hold since 

they will help drive the point of conducting this exploration. 

A Cube Container 

Six-sided figures like cubes may package nearly any other kind of goods. Its equal sides and angles 

make it easy to stack and store, ensuring efficient use of space. Additionally, its sturdy structure 

protects the contents inside, making it an ideal choice for shipping delicate items. The versatility 

of a cube allows it to be used in various industries, ranging from food packaging to electronics, 

making it a popular choice among manufacturers. For example, consider the real lie container 

below. 

 
Diagram 4: An example of a real-life cubic container 

Although it has no purpose, fast-food establishments can utilize the container above to package 

food items. So, what is the best material to make such a container, considering the raw material's 

initial surface area? Let's use the arithmetic calculation shown below to get a solution to this query. 

Assuming a perfect cube, the surface area (𝐶𝑆𝐴) is given as 
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𝐶𝑆𝐴 = 2𝑙𝑤 + 2ℎ𝑤 + 2𝑙ℎ 
However, each side must be equal since it is believed to be a perfect cube. As a result, the formula 

above is modified as follows ("Surface Area of Cube - Formula, Definition, Examples"); 

𝐶𝑆𝐴 = 2𝑙
2 + 2𝑙2 + 2𝑙2 = 6𝑙2 

Let us make 𝑙 the subject of the formula based on the above equation, as indicated below; 

𝐶𝑆𝐴 = 6𝑙
2

6
√
𝐶𝑆𝐴
6
= √𝑙2 

 

𝑂𝑝𝑡𝑙 = √
𝑆𝐴𝑐
6

 

Conversely, a cube's volume is expressed as 

𝐶𝑉 = 𝑙 × 𝑤 × ℎ 
When a perfect cube is taken into account, the volume formula modifies as follows; 

𝐶𝑉 = 𝑙
3 

Now let us use substitution knowledge to substitute 𝑙 𝑤𝑖𝑡ℎ 𝑙𝑜in the volume equation as shown 

below; 

𝐶𝑉 = (√
𝐶𝑆𝐴
6
)

3

 

However, the preliminary computation indicates that the 94800mm2 raw material utilized in this 

study covers many fluid products. Thus, the following is the optimal surface area: 

𝑂𝑝𝑡𝑉 = (√
𝐶𝑆𝐴
6
)

3

 

100000
2
3 =

𝐶𝑢𝑆𝐴
6

 

100000
2
3 × 6 = 𝐶𝑢𝑆𝐴 ≈ 12926.61𝑚𝑚

2 
Optimized Material 

Based on optimized measurements, the materials needed to build a standard cubic container with 

a minimum one-liter capacity are estimated to be around 12926. 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟optimization. By 

contrasting this value with the original value of the accessible raw material, we find that the 

optimized area (12926.61𝑚𝑚2 < 94800𝑚𝑚2) is less than the non-optimized area. Let's 

calculate the percentage change between the two areas using the procedure below. 

% 𝑐ℎ𝑎𝑛𝑔𝑒 =
94800𝑚𝑚2 − 12926.61𝑚𝑚2

94800𝑚𝑚2
× 100% 𝑐ℎ𝑎𝑛𝑔𝑒 ≈ 86.36% 

According to this computation, a cubic container's optimization might save about 86.36% on the 

container's cost and the materials consumed. Again, the calculation up to this point did not consider 

the measurements of the lid of a real-life container. Instead, I assumed a perfect closed cubic 

container, which is not the case in a real-life scenario. In reality, the lid of a container may add 

additional height or width, potentially altering the overall volume. Additionally, the lid may have 

its thickness, further impacting the capacity of the container. Therefore, to accurately calculate the 

true volume of a real-life container, one must account for these factors and incorporate the 



Surname 12 

 

measurements of the lid into the equation. Only then can we precisely estimate the container's 

capacity in practical situations. 

Comparison of the Different Shapes Used in This Exploration 

At this point, I have examined the optimal volume of four cylindrical, conical, and cubic forms. A 

different volume and SA might be obtained from the primary material for every form considered 

in this research. This component is crucial because it will determine the most effective form for 

cost optimization. A summary of the volume determined during this expedition may be seen in the 

table below. 

 Cylinder  Cone  Cubic  

Optimized Area 87.42% 35.04% 86.36% 

According to the above data, a container with a cylindrical form optimizes the most material, while 

one with a conical shape optimizes the least. As a result, a cylindrical container would be the best 

answer if the container's shape is best for optimizing a given raw material to avoid wastage. 

Conclusion and Limitation 
This exploration aimed at utilizing calculus to optimize the raw materials needed to produce plastic 

containers to eliminate waste. The exploration began by determining the measurements of a 

cuboid, which formed the foundation of the volume that needed to be optimized to arrive at an 

optimum outcome. The calculations conducted during the exploration were remarkable, allowing 

me to analyze various shapes commonly used in everyday life for constructing containers and 

elucidate their mathematical connections. However, several limitations were encountered in the 

exploration process. For instance, assumptions were made, including adherence to regular 

measurements of the containers used in the calculations. Another assumption involved overlooking 

the measurements of the container lids, potentially impacting the reliability of the results. 

Additionally, the exploration failed to consider variations in the thickness of the container walls, 

which could have further compromised the precision of the measurements. 

Despite these limitations, the study yielded informative results and laid the groundwork for future 

research on container size and computational aspects. These identified limitations create room for 

further development and investigation of the subject. This entails considering additional factors 

and ensuring the work remains applicable in real-world situations. 
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